Hayter Msa - hayter_msa.c
// Hayter-Penfold (rescaled) MSA structure factor for screened Coulomb interactions
//
// C99 needs declarations of routines here
double Iq(double QQ,
double radius_effective, double zz, double VolFrac, double Temp, double csalt, double dialec);
int
sqcoef(int ir, double gMSAWave[]);
int
sqfun(int ix, int ir, double gMSAWave[]);
double
sqhcal(double qq, double gMSAWave[]);
double Iq(double QQ,
double radius_effective, double VolFrac, double zz, double Temp, double csalt, double dialec)
{
double gMSAWave[17]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17};
double Elcharge=1.602189e-19; // electron charge in Coulombs (C)
double kB=1.380662e-23; // Boltzman constant in J/K
double FrSpPerm=8.85418782E-12; //Permittivity of free space in C^2/(N m^2)
double SofQ, Qdiam, Vp, ss;
double SIdiam, diam, Kappa, cs, IonSt;
double Perm, Beta;
double charge;
int ierr;
diam=2*radius_effective; //in A
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////// convert to USEFUL inputs in SI units //
//////////////////////////// NOTE: easiest to do EVERYTHING in SI units //
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Beta=1.0/(kB*Temp); // in Joules^-1
Perm=dialec*FrSpPerm; //in C^2/(N m^2)
charge=zz*Elcharge; //in Coulomb (C)
SIdiam = diam*1.0E-10; //in m
Vp=M_4PI_3*cube(SIdiam/2.0); //in m^3
cs=csalt*6.022E23*1.0E3; //# salt molecules/m^3
// Compute the derived values of :
// Ionic strength IonSt (in C^2/m^3)
// Kappa (Debye-Huckel screening length in m)
// and gamma Exp(-k)
// the zz*VolFrac/Vp is for the counterions from the micelle, assumed monovalent, the 2.0*cs if for added salt, assumed 1:1 electolyte
IonSt=0.5 * Elcharge*Elcharge*(zz*VolFrac/Vp+2.0*cs);
Kappa=sqrt(2*Beta*IonSt/Perm); //Kappa calc from Ionic strength
// Kappa=2/SIdiam // Use to compare with HP paper
gMSAWave[5]=Beta*charge*charge/(M_PI*Perm*SIdiam*square(2.0+Kappa*SIdiam));
// Finally set up dimensionless parameters
Qdiam=QQ*diam;
gMSAWave[6] = Kappa*SIdiam;
gMSAWave[4] = VolFrac;
//Function sqhpa(qq) {this is where Hayter-Penfold program began}
// FIRST CALCULATE COUPLING
ss=pow(gMSAWave[4],(1.0/3.0));
gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss);
// CALCULATE COEFFICIENTS, CHECK ALL IS WELL
// AND IF SO CALCULATE S(Q*SIG)
ierr=0;
ierr=sqcoef(ierr, gMSAWave);
if (ierr>=0) {
SofQ=sqhcal(Qdiam, gMSAWave);
}else{
SofQ=NAN;
// print "Error Level = ",ierr
// print "Please report HPMSA problem with above error code"
}
return(SofQ);
}
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
//
//
// CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING
// COEFFICIENTS FOR "SQHPA"
//
// JOHN B. HAYTER (I.L.L.) 14-SEP-81
//
// ON EXIT:
//
// SETA IS THE RESCALED VOLUME FRACTION
// SGEK IS THE RESCALED CONTACT POTENTIAL
// SAK IS THE RESCALED SCREENING CONSTANT
// A,B,C,F,U,V ARE THE MSA COEFFICIENTS
// G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG):
// FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
// ZERO INDICATES THE COMPUTATIONAL ACCURACY.
//
// IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
// < 0: FAILED TO CONVERGE
//
int
sqcoef(int ir, double gMSAWave[])
{
int itm=40,ix,ig,ii;
double acc=5.0E-6,del,e1,e2,f1,f2;
// WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
f1=0; //these were never properly initialized...
f2=0;
ig=1;
if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) {
ig=0;
gMSAWave[15]=gMSAWave[14];
gMSAWave[16]=gMSAWave[4];
ix=1;
ir = sqfun(ix,ir,gMSAWave);
gMSAWave[14]=gMSAWave[15];
gMSAWave[4]=gMSAWave[16];
if((ir<0.0) || (gMSAWave[14]>=0.0)) {
return ir;
}
}
gMSAWave[10]=fmin(gMSAWave[4],0.20);
if ((ig!=1) || ( gMSAWave[9]>=0.15)) {
ii=0;
do {
ii=ii+1;
if(ii>itm) {
ir=-1;
return ir;
}
if (gMSAWave[10]<=0.0) {
gMSAWave[10]=gMSAWave[4]/ii;
}
if(gMSAWave[10]>0.6) {
gMSAWave[10] = 0.35/ii;
}
e1=gMSAWave[10];
gMSAWave[15]=f1;
gMSAWave[16]=e1;
ix=2;
ir = sqfun(ix,ir,gMSAWave);
f1=gMSAWave[15];
e1=gMSAWave[16];
e2=gMSAWave[10]*1.01;
gMSAWave[15]=f2;
gMSAWave[16]=e2;
ix=2;
ir = sqfun(ix,ir,gMSAWave);
f2=gMSAWave[15];
e2=gMSAWave[16];
e2=e1-(e2-e1)*f1/(f2-f1);
gMSAWave[10] = e2;
del = fabs((e2-e1)/e1);
} while (del>acc);
gMSAWave[15]=gMSAWave[14];
gMSAWave[16]=e2;
ix=4;
ir = sqfun(ix,ir,gMSAWave);
gMSAWave[14]=gMSAWave[15];
e2=gMSAWave[16];
ir=ii;
if ((ig!=1) || (gMSAWave[10]>=gMSAWave[4])) {
return ir;
}
}
gMSAWave[15]=gMSAWave[14];
gMSAWave[16]=gMSAWave[4];
ix=3;
ir = sqfun(ix,ir,gMSAWave);
gMSAWave[14]=gMSAWave[15];
gMSAWave[4]=gMSAWave[16];
if ((ir>=0) && (gMSAWave[14]<0.0)) {
ir=-3;
}
return ir;
}
int
sqfun(int ix, int ir, double gMSAWave[])
{
double acc=1.0e-6;
double reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,rgek;
double rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma;
double al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5;
double a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6;
double w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56;
double fa,fap,ca,e24g,pwk,qpw,pg,del,fun,fund,g24;
int ii,ibig,itm=40;
// WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
a2=0;
a3=0;
b2=0;
b3=0;
v2=0;
v3=0;
p2=0;
p3=0;
// CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981)
reta = gMSAWave[16];
eta2 = reta*reta;
eta3 = eta2*reta;
e12 = 12.0*reta;
e24 = e12+e12;
gMSAWave[13] = pow( (gMSAWave[4]/gMSAWave[16]),(1.0/3.0));
gMSAWave[12]=gMSAWave[6]/gMSAWave[13];
ibig=0;
if (( gMSAWave[12]>15.0) && (ix==1)) {
ibig=1;
}
gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]);
rgek = gMSAWave[11];
rak = gMSAWave[12];
ak2 = rak*rak;
ak1 = 1.0+rak;
dak2 = 1.0/ak2;
dak4 = dak2*dak2;
d = 1.0-reta;
d2 = d*d;
dak = d/rak;
dd2 = 1.0/d2;
dd4 = dd2*dd2;
dd45 = dd4*2.0e-1;
eta3d=3.0*reta;
eta6d = eta3d+eta3d;
eta32 = eta3+ eta3;
eta2d = reta+2.0;
eta2d2 = eta2d*eta2d;
eta21 = 2.0*reta+1.0;
eta22 = eta21*eta21;
// ALPHA(I)
al1 = -eta21*dak;
al2 = (14.0*eta2-4.0*reta-1.0)*dak2;
al3 = 36.0*eta2*dak4;
// BETA(I)
be1 = -(eta2+7.0*reta+1.0)*dak;
be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2;
be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4;
// NU(I)
vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak;
vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2;
vu3 = (eta32+3.0e1*reta-5.0)*dak4;
vu4 = vu1+e24*rak*vu3;
vu5 = eta6d*(vu2+4.0*vu3);
// PHI(I)
ph1 = eta6d/rak;
ph2 = d-e12*dak2;
// TAU(I)
ta1 = (reta+5.0)/(5.0*rak);
ta2 = eta2d*dak2;
ta3 = -e12*rgek*(ta1+ta2);
ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2);
ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2;
// double PRECISION SINH(K), COSH(K)
ex1 = exp(rak);
ex2 = 0.0;
if ( gMSAWave[12]<20.0) {
ex2=exp(-rak);
}
sk=0.5*(ex1-ex2);
ck = 0.5*(ex1+ex2);
ckma = ck-1.0-rak*sk;
skma = sk-rak*ck;
// a(I)
a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4;
if (ibig==0) {
a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4;
a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4;
}
// b(I)
b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4;
if (ibig==0) {
b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4;
b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4;
}
// V(I)
v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45;
if (ibig==0) {
v2 = (vu4*ck-vu5*sk)*dd45;
v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45;
}
// P(I)
pp1 = ph1*ph1;
pp2 = ph2*ph2;
pp = pp1+pp2;
p1p2 = ph1*ph2*2.0;
p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2;
if (ibig==0) {
p2 = (pp*sk+p1p2*ck)*dd2;
p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2;
}
// T(I)
t1 = ta3+ta4*a1+ta5*b1;
if (ibig!=0) {
// VERY LARGE SCREENING: ASYMPTOTIC SOLUTION
v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45;
t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0;
p3 = (pp1-pp2)*dd2;
b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4;
a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4;
um6 = t3*a3-e12*v3*v3;
um5 = t1*a3+a1*t3-e24*v1*v3;
um4 = t1*a1-e12*v1*v1;
al6 = e12*p3*p3;
al5 = e24*p1*p3-b3-b3-ak2;
al4 = e12*p1*p1-b1-b1;
w56 = um5*al6-al5*um6;
w46 = um4*al6-al4*um6;
fa = -w46/w56;
ca = -fa;
gMSAWave[3] = fa;
gMSAWave[2] = ca;
gMSAWave[1] = b1+b3*fa;
gMSAWave[0] = a1+a3*fa;
gMSAWave[8] = v1+v3*fa;
gMSAWave[14] = -(p1+p3*fa);
gMSAWave[15] = gMSAWave[14];
if (fabs(gMSAWave[15])<1.0e-3) {
gMSAWave[15] = 0.0;
}
gMSAWave[10] = gMSAWave[16];
} else {
t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk);
t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0;
// MU(i)
um1 = t2*a2-e12*v2*v2;
um2 = t1*a2+t2*a1-e24*v1*v2;
um3 = t2*a3+t3*a2-e24*v2*v3;
um4 = t1*a1-e12*v1*v1;
um5 = t1*a3+t3*a1-e24*v1*v3;
um6 = t3*a3-e12*v3*v3;
// GILLAN CONDITION ?
//
// YES - G(X=1+) = 0
//
// COEFFICIENTS AND FUNCTION VALUE
//
if ((ix==1) || (ix==3)) {
// NO - CALCULATE REMAINING COEFFICIENTS.
// LAMBDA(I)
al1 = e12*p2*p2;
al2 = e24*p1*p2-b2-b2;
al3 = e24*p2*p3;
al4 = e12*p1*p1-b1-b1;
al5 = e24*p1*p3-b3-b3-ak2;
al6 = e12*p3*p3;
// OMEGA(I)
w16 = um1*al6-al1*um6;
w15 = um1*al5-al1*um5;
w14 = um1*al4-al1*um4;
w13 = um1*al3-al1*um3;
w12 = um1*al2-al1*um2;
w26 = um2*al6-al2*um6;
w25 = um2*al5-al2*um5;
w24 = um2*al4-al2*um4;
w36 = um3*al6-al3*um6;
w35 = um3*al5-al3*um5;
w34 = um3*al4-al3*um4;
w32 = um3*al2-al3*um2;
//
w46 = um4*al6-al4*um6;
w56 = um5*al6-al5*um6;
w3526 = w35+w26;
w3425 = w34+w25;
// QUARTIC COEFFICIENTS
w4 = w16*w16-w13*w36;
w3 = 2.0*w16*w15-w13*w3526-w12*w36;
w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526;
w1 = 2.0*w15*w14-w13*w24-w12*w3425;
w0 = w14*w14-w12*w24;
// ESTIMATE THE STARTING VALUE OF f
if (ix==1) {
// LARGE K
fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32);
} else {
// ASSUME NOT TOO FAR FROM GILLAN CONDITION.
// IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE.
gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek);
if (( gMSAWave[11]<=2.0) && ( gMSAWave[11]>=0.0) && ( gMSAWave[12]<=1.0)) {
e24g = e24*rgek*exp(rak);
pwk = sqrt(e24g);
qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d;
gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2;
}
pg = p1+gMSAWave[14];
ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3;
ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3));
fap = -(pg+p2*ca)/p3;
}
// AND REFINE IT ACCORDING TO NEWTON
ii=0;
do {
ii = ii+1;
if (ii>itm) {
// FAILED TO CONVERGE IN ITM ITERATIONS
ir=-2;
return (ir);
}
fa = fap;
fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa;
fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa;
fap = fa-fun/fund;
del=fabs((fap-fa)/fa);
} while (del>acc);
ir = ir+ii;
fa = fap;
ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12);
gMSAWave[14] = -(p1+p2*ca+p3*fa);
gMSAWave[15] = gMSAWave[14];
if (fabs(gMSAWave[15])<1.0e-3) {
gMSAWave[15] = 0.0;
}
gMSAWave[10] = gMSAWave[16];
} else {
ca = ak2*p1+2.0*(b3*p1-b1*p3);
ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3));
fa = -(p1+p2*ca)/p3;
if (ix==2) {
gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa;
}
if (ix==4) {
gMSAWave[15] = -(p1+p2*ca+p3*fa);
}
}
gMSAWave[3] = fa;
gMSAWave[2] = ca;
gMSAWave[1] = b1+b2*ca+b3*fa;
gMSAWave[0] = a1+a2*ca+a3*fa;
gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0];
}
g24 = e24*rgek*ex1;
gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24);
return (ir);
}
double
sqhcal(double qq, double gMSAWave[])
{
double SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter;
// WAVE gMSAWave = $"root:HayPenMSA:gMSAWave"
etaz = gMSAWave[10];
akz = gMSAWave[12];
gekz = gMSAWave[11];
e24 = 24.0*etaz;
x1 = exp(akz);
x2 = 0.0;
if ( gMSAWave[12]<20.0) {
x2 = exp(-akz);
}
ck = 0.5*(x1+x2);
sk = 0.5*(x1-x2);
ak2 = akz*akz;
qk = qq/gMSAWave[13];
q2k = qk*qk;
if (qk<=1.0e-08) {
SofQ = -1.0/gMSAWave[0];
} else {
// this rescales Q.sigma = 2.Q.Radius, so is hard to predict the value to test the function
if (qk<=0.01) {
// try Taylor series expansion at small qk (RKH Feb 2016, with help from Mathematica),
// transition point may need to depend on precision of cpu used and ALAS on the values of some of the parameters !
// note have adsorbed a factor 24 from SofQ=
// needs thorough test over wide range of parameter space!
// there seem to be some rounding issues here in single precision, must use double
aqk = gMSAWave[0]*(8.0+2.0*etaz) + 6*gMSAWave[1] -12.0*gMSAWave[3]
-24*(gekz*(1.0+akz) -ck*akz*gMSAWave[2] +gMSAWave[3]*(ck-1.0) +(gMSAWave[2]-gMSAWave[3]*akz)*sk )/ak2
+q2k*( -(gMSAWave[0]*(48.0+15.0*etaz) +40.0*gMSAWave[1])/60.0 +gMSAWave[3]
+(4.0/ak2)*(gekz*(9.0+7.0*akz) +ck*(9.0*gMSAWave[3] -7.0*gMSAWave[2]*akz) +sk*(9.0*gMSAWave[2] -7.0*gMSAWave[3]*akz)) );
SofQ = 1.0/(1.0-gMSAWave[10]*aqk);
} else {
qk2 = 1.0/q2k;
qk3 = qk2/qk;
qqk = 1.0/(qk*(q2k+ak2));
SINCOS(qk,sink,cosk);
asink = akz*sink;
qcosk = qk*cosk;
aqk = gMSAWave[0]*(sink-qcosk);
aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk);
inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink;
aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3;
aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk;
aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk;
aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2;
aqk=aqk -gekz*(asink+qcosk)*qqk;
SofQ = 1.0/(1.0 -e24*aqk);
} }
return (SofQ);
}
Back to Model
Download