- Categories
- Structure Factor
- Squarewell
- squarewell.py
Squarewell - squarewell.py
r"""
Calculates the interparticle structure factor for a hard sphere fluid
with a narrow, attractive, square well potential. **The Mean Spherical
Approximation (MSA) closure relationship is used, but it is not the most
appropriate closure for an attractive interparticle potential.** However,
the solution has been compared to Monte Carlo simulations for a square
well fluid and these show the MSA calculation to be limited to well
depths $\epsilon < 1.5$ kT and volume fractions $\phi < 0.08$.
Positive well depths correspond to an attractive potential well. Negative
well depths correspond to a potential "shoulder", which may or may not be
physically reasonable. The :ref:`stickyhardsphere` model may be a better
choice in some circumstances.
Computed values may behave badly at extremely small $qR$.
.. note::
Earlier versions of SasView did not incorporate the so-called
$\beta(q)$ ("beta") correction [2] for polydispersity and non-sphericity.
This is only available in SasView versions 5.0 and higher.
The well width $(\lambda)$ is defined as multiples of the particle diameter
$(2 R)$.
The interaction potential is:
.. math::
U(r) = \begin{cases}
\infty & r < 2R \\
-\epsilon & 2R \leq r < 2R\lambda \\
0 & r \geq 2R\lambda
\end{cases}
where $r$ is the distance from the center of a sphere of a radius $R$.
In SasView the effective radius may be calculated from the parameters
used in the form factor $P(q)$ that this $S(q)$ is combined with.
For 2D data: The 2D scattering intensity is calculated in the same way as 1D,
where the $q$ vector is defined as
.. math::
q = \sqrt{q_x^2 + q_y^2}
References
----------
.. [#] R V Sharma, K C Sharma, *Physica*, 89A (1977) 213
.. [#] M Kotlarchyk and S-H Chen, *J. Chem. Phys.*, 79 (1983) 2461-2469
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:** Steve King **Date:** March 27, 2019
"""
import numpy as np
from numpy import inf
name = "squarewell"
title = "Square well structure factor with Mean Spherical Approximation closure"
description = """\
[Square well structure factor, with MSA closure]
Interparticle structure factor S(Q) for a hard sphere fluid
with a narrow attractive well. Fits are prone to deliver non-
physical parameters; use with care and read the references in
the model documentation.The "beta(q)" correction is available
in versions 4.2.2 and higher.
"""
category = "structure-factor"
structure_factor = True
single = False
parameters = [
["radius_effective", "Ang", 50.0, [0, inf], "volume",
"effective radius of hard sphere"],
["volfraction", "", 0.04, [0, 0.08], "",
"volume fraction of spheres"],
["welldepth", "kT", 1.5, [0.0, 1.5], "",
"depth of well, epsilon"],
["wellwidth", "diameters", 1.2, [1.0, inf], "",
"width of well in diameters (=2R) units, must be > 1"],
]
form_volume = """
return 1.0;
"""
Iq = """
// single precision is very poor at extreme small Q, would need a Taylor series
double req,phis,edibkb,lambda,struc;
double sigma,eta,eta2,eta3,eta4,etam1,etam14,alpha,beta,gamm;
double x,sk,sk2,sk3,sk4,t1,t2,t3,t4,ck;
double S,C,SL,CL;
x= q;
req = radius_effective;
phis = volfraction;
edibkb = welldepth;
lambda = wellwidth;
sigma = req*2.;
eta = phis;
eta2 = eta*eta;
eta3 = eta*eta2;
eta4 = eta*eta3;
etam1 = 1. - eta;
etam14 = etam1*etam1*etam1*etam1;
// temp borrow sk for an intermediate calc
sk = 1.0 +2.0*eta;
sk *= sk;
alpha = ( sk + eta3*( eta-4.0 ) )/etam14;
beta = -(eta/3.0) * ( 18. + 20.*eta - 12.*eta2 + eta4 )/etam14;
gamm = 0.5*eta*( sk + eta3*(eta-4.) )/etam14;
// calculate the structure factor
sk = x*sigma;
sk2 = sk*sk;
sk3 = sk*sk2;
sk4 = sk3*sk;
SINCOS(sk,S,C);
SINCOS(lambda*sk,SL,CL);
t1 = alpha * sk3 * ( S - sk * C );
t2 = beta * sk2 * 2.0*( sk*S - (0.5*sk2 - 1.)*C - 1.0 );
t3 = gamm*( ( 4.0*sk3 - 24.*sk ) * S - ( sk4 - 12.0*sk2 + 24.0 )*C + 24.0 );
t4 = -edibkb*sk3*(SL +sk*(C - lambda*CL) - S );
ck = -24.0*eta*( t1 + t2 + t3 + t4 )/sk3/sk3;
struc = 1./(1.-ck);
return(struc);
"""
def random():
"""Return a random parameter set for the model."""
pars = dict(
scale=1, background=0,
radius_effective=10**np.random.uniform(1, 4.7),
volfraction=np.random.uniform(0.00001, 0.08),
welldepth=np.random.uniform(0, 1.5),
wellwidth=np.random.uniform(1, 1.2),
)
return pars
demo = dict(radius_effective=50, volfraction=0.04, welldepth=1.5,
wellwidth=1.2, radius_effective_pd=0, radius_effective_pd_n=0)
tests = [
[{'scale': 1.0, 'background': 0.0, 'radius_effective': 50.0,
'volfraction': 0.04, 'welldepth': 1.5, 'wellwidth': 1.2,
'radius_effective_pd': 0}, [0.001], [0.97665742]],
]
Back to Model
Download