Core-Chain-Chain (CCC) Model - core_chain_chain.py

    r"""
Definition
----------

This form factor describes scattering from spherical cores (nanoparticle, micellar, etc.) that have chains coming off normal from their surface. In the case of
the Core-Chain-Chain (CCC) Model, these chains have two different regions of conformation, size, and scattering length density. The transition from region 1 (near
the nanoparticle core, CPB) to region 2 (SDPB) is given by the parameter :math: `r_{c}`, which is the distance from the center of the nanoparticle to the junction point. See
fig. 1 of reference 1 for a schematic of the geometry.

The scattering intensity is the sum of 8 terms, and an incoherent background term :math: `B`. This model returns the following scattering intensity:
.. math::
	I(q) = scale \times \left[ P_{core}(q) + N_{c}P_{CPB}(q) + N_{c}P_{SDPB}(q) +  2N_{c}F_{core}(q)j_{0}(qr_{core})F_{CPB}(q) + 2N_{c}F_{core}(q)j_{0}(qr_{c})F_{SDPB}(q) + N_{c}(N_{c} - 1)F_{CPB}(q)^{2}j_{0}(qr_{core})^2 +  N_{c}(N_{c} - 1)F_{SDPB}(q)^{2}j_{0}(qr_{c})^2 + N_{c}^{2}F_{CPB}(q)j_{0}(qr_{core})j_{0}(qr_{c})F_{SDPB}(q) \right] + B


where :math: `N_{c} is the number of chains grafted to the nanoparticle, :math: `r_{core}` is the nanoparticle radius, and :math: `r_{c}` is the position of the junction between the CPB and
SDPB regions. :math: `j_{0}(.)` is a spherical Bessel function. The terms :math: `P_{core}(q)`,  :math: `P_{CPB}(q)`, and :math: `P_{SDPB}(q)` are the form factors of the spherical core, polymer in the CPB region, and polymer in the SDPB
region, respectively. :math: `F_{core}(q)`, :math: `F_{CPB}(q)`, and :math: `F_{SDPB}(q)` are the form factor amplitudes of the respective regions. For the nanoparticle core, these terms are related as:

.. math::
	P_{core}(q) = \left| F_{core}(q) \right|^{2} = \left| V_{core}(\rho_{core} - \rho_{solv})\frac{3j_{1}(qr_{core})}{qr_{core}} \right|^{2}

where :math: `\rho_{core}` is the scattering length density of the nanoparticle core, :math: `\rho_{solv}` is the scattering length density of the solvent/matrix, :math: `V_{core}` is the
volume of the nanoparticle core, and :math: `j_{1}(.)` is a spherical Bessel function.

Scattering from the CPB and SDPB regions is described by the form factor amplitudes and form factors of these regions. For a given region :math: `i`, these terms read:

.. math::
	P_{i}(q,N_{i}) = V_{i}^{2}(\rho_{i} - \rho_{solv})^{2} \left[ \frac{1}{\nu_{i} U_{i}^{1/2\nu_{i}}}\gamma \left( \frac{1}{2\nu_{i}}, U_{i}\right) - \frac{1}{\nu_{i} U_{i}^{1/\nu_{i}}}\gamma \left(\frac{1}{\nu_{i}}, U_{i} \right) \right]

and
.. math::

	F_{i}(q,N_{i}) = V_{i}(\rho_{i} - \rho_{solv})\frac{1}{2\nu_{i} U_{i}^{1/2\nu_{i}}}\gamma \left( \frac{1}{2\nu_{i}}, U_{i}\right)


where :math: `N_{i}` is the degree of polymerization of the portion of polymer in region :math: `i`, :math: `V_{i}` is the volume of polymer in region :math: `i`, :math: `\nu_{i}` is the excluded volume parameter of the polymer in region :math: `i`, :math: `\rho_{i}` is the scattering length density of polymer in region :math: `i`, :math: `U_{i} = q^{2} b^{2} N_{i}^{2\nu_{i}}/6`, :math: `b` is the polymer's Kuhn length, and :math: `\gamma` is the lower incomplete gamma function.


References
----------

1. Y. Wei, Y. Xu, A. Faraone, and M. J. A. Hore, "Local Structure and Relaxation Dynamics in the Brush of Polymer-Grafted Silica Nanoparticles", ACS Macro Letters, 7, 699-704 (2018)

Authorship and Verification
----------------------------

* **Author:** Michael J. A. Hore **Date:** 13 Mar 2018
"""

import numpy as np  # type: ignore
from numpy import pi, inf, power, errstate
from scipy.special import gammainc, gamma, j0, j1

name = "core_chain_chain"
title = "Spherically symmetric core with grafted polymer chains having two different conformations."
description = """
"""
category = "shape:sphere"

structure_factor = True

#             [ "name",       "units",         default, [lower, upper], "type",   "description"],
parameters = [["sld",         "1e-6/Ang^2",    3.5,     [-inf, inf],    "sld",    "Core scattering length density"],
              ["sld1",        "1e-6/Ang^2",    1.0,     [-inf, inf],    "sld",    "Chain region 1 scattering length density"],
              ["sld2",        "1e-6/Ang^2",    1.0,     [-inf, inf],    "sld",    "Chain region 2 scattering length density"],
              ["sld_solvent", "1e-6/Ang^2",    4.4,     [-inf, inf],    "sld",    "Solvent scattering length density"],
              ["radius",      "Ang",           60,      [0, inf],       "volume", "Core radius"],
              ["rc",          "Ang",           100,     [0, inf],       "volume", "Cutoff distance between region 1 and region 2"],
              ["poly_sig",    "chains/nm^2",   0.50,    [0, inf],       "",       "Polymer grafting density"],
              ["rg1",         "Ang",           40,      [1, inf],       "volume", "Radius of gyration of chain in region 1"],
              ["rg2",         "Ang",           40,      [1, inf],       "volume", "Radius of gyration of chain in region 2"],
              ["nu1",         "None",          0.50,    [0.25, 1.0],    "",       "Excluded volume parameter of chain in region 1"],
              ["nu2",         "None",          0.50,    [0.25, 1.0],    "",       "Excluded volume parameter of chain in region 2"],
              ["v1",          "Ang^3",         30,      [0, inf]   ,    "volume", "Volume of polymer in region 1"],
              ["v2",          "Ang^3",         30,      [0, inf]   ,    "volume", "Volume of polymer in region 2"],
             ]

def Iq(q,
       sld,
       sld1,
       sld2,
       sld_solvent,
       radius,
       rc,
       poly_sig,
       rg1,
       rg2,
       nu1,
       nu2,
       v1,
       v2):
    """
    :param q:              Input q-value
    :param sld:		   Core scattering length density
    :param sld1:           Chain region 1 scattering length density
    :param sld2:           Chain region 2 scattering length density
    :param sld_solvent:    Solvent scattering length density
    :param radius:         Core radius
    :param rc:             Cutoff distance between region 1 and region 2
    :param poly_sig:       Polymer grafting density
    :param rg1:            Radius of gyration of chain in region 1
    :param rg2:            Radius of gyration of chain in region 2
    :param nu1:            Excluded volume parameter of chain in region 1
    :param nu2:            Excluded volume parameter of chain in region 2
    :param v1:             Volume of polymer in region 1
    :param v2:             Volume of polymer in region 2
    :return:               Calculated intensity
    """

    # Number of grafted chains per core:
    Ng = poly_sig * 4.00 * pi * (0.1 * radius) * (0.1 * radius)

    # Volume of core regions:
    Vcore      = 4.0/3.0 * pi * radius**3
    Vtotal     = Vcore + Ng * (v1 + v2)

    # One over excl. vol. parm.:
    onu1  = 1.0 / nu1
    o2nu1 = 1.0 / 2.0 / nu1
    onu2  = 1.0 / nu2
    o2nu2 = 1.0 / 2.0 / nu2

    # Propagator function:
    E1 = j0(q*(radius+rg1))
    E2 = j0(q*(rc+rg2))

    # Polymer size variable
    Usub1 = (q*rg1)**2 * (2.0*nu1 + 1.0) * (2.0*nu1 + 2.0) / 6.0
    Usub2 = (q*rg2)**2 * (2.0*nu2 + 1.0) * (2.0*nu2 + 2.0) / 6.0

    # Form factor amplitude of core-shell sphere:
    with errstate(divide='ignore'):
        Fs = 3.0*(sld - sld_solvent)*Vcore*j1(q*radius)/(q*radius) 


    # Form factor amplitude of the polymer:
    with errstate(divide='ignore'):
        Fp1 = o2nu1*power(Usub1, -o2nu1) * gamma(o2nu1) * gammainc(o2nu1, Usub1) 
        Fp2 = o2nu2*power(Usub2, -o2nu2) * gamma(o2nu2) * gammainc(o2nu2, Usub2) 


    # Form factor of the polymer (Pp(q) is not simply Fp(q)^2!!):
    with errstate(divide='ignore'):
        Pp1 = onu1 * power(Usub1, -o2nu1)*gamma(o2nu1)*gammainc(o2nu1, Usub1) - onu1 * power(Usub1, -onu1)*gamma(onu1)*gammainc(onu1,Usub1)
        Pp2 = onu2 * power(Usub2, -o2nu2)*gamma(o2nu2)*gammainc(o2nu2, Usub2) - onu2 * power(Usub2, -onu2)*gamma(onu2)*gammainc(onu2,Usub2)

    # Combine all terms to form intensity:
    #
    # Term 1: Core-shell particle:
    inten = Fs * Fs

    # Term 2: Polymer 1
    inten = inten + Ng * (sld1 - sld_solvent) * (sld1 - sld_solvent) * v1 * v1 * Pp1

    # Term 3: Polymer 2
    inten = inten + Ng * (sld2 - sld_solvent) * (sld2 - sld_solvent) * v2 * v2 * Pp2

    # Term 4: Particle/polymer 1 crossterm:
    inten = inten + 2.0 * Ng * v1 * (sld1 - sld_solvent) * Fs * E1 * Fp1

    # Term 5: Particle/polymer 2 crossterm:
    inten = inten + 2.0 * Ng * v2 * (sld2 - sld_solvent) * Fs * E2 * Fp2

    # Term 6: Polymer 1/polymer 1 crossterm:
    inten = inten + Ng * (Ng - 1) * v1 * v1 * (sld1 - sld_solvent) * (sld1 - sld_solvent) * Fp1 * E1 * E1 * Fp1

    # Term 7: Polymer 2/polymer 2 crossterm:
    inten = inten + Ng * (Ng - 1) * v2 * v2 * (sld2 - sld_solvent) * (sld2 - sld_solvent) * Fp2 * E2 * E2 * Fp2

    # Term 8: Polymer 1/polymer 2 crossterm:
    inten = inten + Ng * Ng * v1 * v2 * (sld1 - sld_solvent) * (sld2 - sld_solvent) * Fp1 * E1 * E2 * Fp2

    with errstate(divide='ignore'):
        # Convert SLDs to A^-2, and convert intensity to cm^-1. Normalize by particle volume.
        inten = inten * 1.0e-6 * 1.0e-6 * 1.0e8 / Vtotal

    return inten

Iq.vectorized = True  # Iq accepts an array of q values

# Effective Radius for S(Q). This is only an estimation.
def ER(radius, rc, rg1, rg2, v1, v2):
    """Effective radius of a core-chain-chain sphere."""
    eff_rad = radius + rg1 + rg2
    return eff_rad

# Test and validation
demo = dict(scale = 1, background = 0, sld=6.9, sld1=1.5, sld2=3.8, sld_solvent=5.88, radius=60, rc=180, poly_sig=0.5, rg1=105,rg2=50,nu1=0.8,nu2=0.6,v1=4400,v2=580)
tests = [[0.01, 155.66117003], [0.1, 1.38459492]]

Back to Model Download