Polydispersity in the bilayer thickness can be applied from the GUI.
Definition
The scattering intensity $I(q)$ for dilute, randomly oriented, "infinitely large" sheets or lamellae is
$$ I(q) = \text{scale}\frac{2\pi P(q)}{q^2\delta} + \text{background}
$$
The form factor is
$$ P(q) = \frac{2\Delta\rho^2}{q^2}(1-\cos(q\delta)) = \frac{4\Delta\rho^2}{q^2}\sin^2\left(\frac{q\delta}{2}\right)
$$
where $\delta$ is the total layer thickness and $\Delta\rho$ is the scattering length density difference.
This is the limiting form for a spherical shell of infinitely large radius. Note that the division by $\delta$ means that $scale$ in sasview is the volume fraction of sheet, $\phi = S\delta$ where $S$ is the area of sheet per unit volume. $S$ is half the Porod surface area per unit volume of a thicker layer (as that would include both faces of the sheet).
The 2D scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as
$$ q = \sqrt{q_x^2 + q_y^2}
$$
References
F Nallet, R Laversanne, and D Roux, *J. Phys. II France*, 3, (1993) 487-502
J Berghausen, J Zipfel, P Lindner, W Richtering, *J. Phys. Chem. B*, 105, (2001) 11081-11088
Authorship and Verification
**Author:**
**Last Modified by:**
**Last Reviewed by:**
Created By | sasview |
Uploaded | Sept. 7, 2017, 3:56 p.m. |
Category | Lamellae |
Score | 0 |
Verified | Verified by SasView Team on 07 Sep 2017 |
In Library | This model is included in the SasView library by default |
Files |
lamellar.py |
No comments yet.
Please log in to add a comment.